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Abstract—GitHub Actions (GA) is an orchestration platform
that streamlines the automatic execution of software engineering
tasks such as building, testing, and deployment. Although GA
workflows are the primary means for automation, according to
our experience and observations, human intervention is necessary
to correct defects, update dependencies, or refactor existing
workflow files. In fact, previous research has shown that software
artifacts similar to workflows, such as build files and bots, can
introduce additional maintenance tasks in software projects. This
suggests that workflow files, which are also used to automate
repetitive tasks in professional software production, may generate
extra workload for developers. However, the nature of such effort
has not been well studied. This paper presents a large-scale
empirical investigation towards characterizing the maintenance
of GA workflows by studying the evolution of workflow files
in almost 200 mature GitHub projects across ten programming
languages. Our findings largely confirm the results of previous
studies on the maintenance of similar artifacts, while also
revealing GA-specific insights such as bug fixing and CI/CD
improvement being among the major drivers of GA maintenance.
A direct implication is that practitioners should be aware of
proper resource planning and allocation for maintaining GA
workflows, thus exposing the “hidden costs of automation.” Our
findings also call for identifying and documenting best practices
for such maintenance, and for enhanced tool features supporting
dependency tracking and better error reporting of workflow
specifications.

Index Terms—Continuous Integration, GitHub Actions, Work-
flow Maintenance, Empirical Study

I. INTRODUCTION

The software industry has widely adopted Continuous
Practices (CP) such as Continuous Integration and Delivery
(CI/CD) to automate software engineering tasks [1]. The
premise driving these practices suggests that they can help
minimize integration issues, enable frequent integration, au-
tomatically deploy changes, and speed up feedback loops to
software developers [2]–[4].

Within the GitHub ecosystem, developers can automate
software engineering tasks through GitHub Actions (GA),
a widely adopted tool for implementing CP [1]. GA uses
YAML workflow files as the building blocks for automating
software engineering tasks. Developers can specify these files
to perform jobs when a specific trigger event occurs throughout
the definition of executable processes. The workflows can
execute jobs concurrently, sequentially, or following a specific
order defined by the developer. Each job comprises sequen-
tially executed steps that embody commands, similar to bash

scripts, to perform a common CI/CD task. Events that trigger
workflows include pushing changes to a repository, generating
new pull requests, and regularly scheduled events.

Although workflow files are the primary means for speci-
fying automation, human intervention is necessary to correct
defects, update dependencies, or refactor existing workflow
files. For instance, the pull request titled “use github.ref rather
than github.event.ref in deploy.yml” of the tldraw GitHub
repository1 illustrates an instance of CI/CD enhancement. In
this case, developers include Dependabot2, a tool to automat-
ically update dependencies, as part of the CI/CD process [5].
This means that automating the dependency update process
comes with a cost: an additional workload, as developers
need to set up the new tool in conjunction with the project’s
workflows. This example aligns with previous studies showing
that integrating bots to automate dependency updates generates
maintenance overhead for developers [6].

More generally, previous research has shown that soft-
ware artifacts similar to workflows, such as build files and
bots, can introduce additional maintenance tasks in software
projects [6], [7]. This suggests that workflow files, which are
also used to automate repetitive tasks in professional software
production, may generate extra workload for developers. How-
ever, the nature of such effort has not been well studied.

We present a large-scale empirical study towards charac-
terizing the effort needed to maintain GA workflow files. We
review the change history of 183 projects hosted on GitHub
using GA across 10 programming languages. Inspired by
previous work on similar kinds of development artifacts [7],
[8], our study focuses on three primary aspects: (1) the number
and size of workflow files distributed across multiple projects
as well as the frequency of changes (i.e., file churn rate), (2)
workflow coupling, which denotes how frequently source code
changes require workflow changes, and (3) workflow owner-
ship, which involves identifying the developers responsible for
these changes.

On the one hand, as expected, we find that workflow
files constitute a rather small proportion of a project’s total
amount of files, and that they are changed less frequently
than other kinds of source code files. On the other hand,
however, the average size of workflow files is comparable

1https://github.com/tldraw/tldraw/pull/2495
2https://github.com/dependabot/dependabot-core
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to those of production and test code files, and they are far
from being stable in terms of evolution. Developers tend to
update production and test code when workflow files are
modified, primarily due to bug fixing and CI/CD improvement.
Changes are often conducted by only a few developers, but
these developers also take the roles of production and test
code developers.

The implications of our study are manifold. Practitioners
should be aware that while automation through GA workflows
helps to streamline the CI/CD process [9], it also incurs
significant maintenance efforts expressed in workflow mod-
ifications. This awareness can lead to better planning and
resource allocation for maintaining GA automation workflows.
Moreover, like any other artifact in professional software
production, GA workflows should be designed with maintain-
ability in mind. From a researchers’ perspective, our findings
highlight the need to identify and document best practices
for maintaining GA workflows. In addition, supporting tools
should be equipped with features that facilitate easier updates
and maintenance, particularly regarding dependency tracking
and improved error reporting.

In summary, this paper provides the following contributions:
• A large-scale empirical study providing quantitative re-

sults on the volume, evolution and ownership of GA
workflow files as well as their logical coupling with other
source code files.

• A detailed qualitative investigation that yields a taxonomy
comprising four major reasons for the logical coupling of
workflow files and other source code files.

• A dataset curated from 183 mature GitHub projects
facilitating further research on studying the evolution and
maintenance of GA workflows.

The data and tools used in our study are publicly available
for the sake of replication and reproduction [10].

II. RESEARCH QUESTIONS

The goal of this study is to characterize the maintenance
of GA workflow files. We propose five concrete research
questions for guiding our study, inspired by prior empirical
research on the maintenance of similar artifacts [7], [8]. With
these RQs, we aim to better understand (i) the volume and
evolution of workflow files within a software project (RQ1
and RQ2), (ii) the logical coupling of workflow files and other
source code files including the contributing factors (RQ3 and
RQ4), and (iii) workflow ownership in terms of developers
being responsible for changing workflow files (RQ5):
RQ1: How many workflow files are in a project, and what
are their sizes? We aim to quantify the volume of workflow
files to assess their significance across multiple projects.
Determining their size serves as first high-level indicator for
assessing their complexity.
RQ2: What is the rate of changes in workflow files? We
seek to analyze the rate of change in workflow files (i.e., file
churn rate [11]) by measuring the fraction of workflow files
that have undergone changes over a specified period. This is
motivated by previous research by Shin et al., and Jiang and

Adams [8], [12], which underscores that a high churn rate may
indicate the presence of flawed or potentially vulnerable files,
requiring increased maintenance effort.
RQ3: To what extent are workflow files logically coupled
with other source code files? We want to examine the
degree of interdependence between workflow files and other
file categories using logical coupling [13]. Previous studies
indicate that artifacts similar to workflows, such as build and
Infrastructure as Code files, exhibit low coupling with source
code files [7], [8]. In this context, we aim to determine whether
this is different for workflow files or holds true for them as
well.
RQ4: What are the reasons that contribute to workflow
files being logically coupled with other source code files?
Given that some degree of logical coupling can be observed,
we aim to uncover the causes of logical coupling between
workflow files and other file categories. By knowing the
reasons behind such coupling across multiple projects, we
can assess whether it is an inherent aspect of the system
architecture or if there is a common pattern of developers’ be-
havior. We identify these reasons through a qualitative analysis
of logical workflow coupling and develop a comprehensive
taxonomy of the contributing factors.
RQ5: How is workflow ownership distributed among dif-
ferent roles of developers? We want to determine how many
developers are involved in maintaining workflow files, and how
such ownership is distributed among different roles of devel-
opers. This will help us to understand how responsibilities
are distributed within developer teams and whether there are
potential bottlenecks or knowledge silos.

III. STUDY DESIGN

In this section, we give an overview of our study design
comprising three major phases, namely project selection, data
curation, and data analysis. We structure Sections III-A and
III-B according to the individual steps of each of the first
two phases. For the sake of avoiding redundant descriptions,
Section III-C provides a more general introduction into the
analysis techniques used in our study, as they are partially
reused across our five RQs. We will describe their applications
in terms of the concrete analyses in more detail in Section IV.

A. Project Selection

We collected a dataset from GitHub projects using GA. Our
records include source code change logs and details about the
developers responsible for the changes. To ensure the quality
and relevance of our dataset, we followed the methodology
proposed by Kalliamvakou et al. [14], splitting the selection
process into four inclusion criteria: (a) initial inclusion criteria,
(b) projects that use GA and specific programming languages,
(c) active, and large projects, and (d) software projects that
are not duplicates of each other.

(a) Initial inclusion criteria: We leverage the seart-ghs
website [15] to identify software projects on GitHub [15]. To
find projects with a rich change history, we selected only those
with at least 500 commits. Furthermore, using the number



of stars as a proxy for a project’s popularity [16], we only
included projects with at least 500 stars to avoid irrelevant
or toy projects. We did not include forked projects because
they largely contain duplicated project histories, which would
bias our analysis. To include a large number of projects, we
selected those created before December 31, 2023.

(b) Projects using popular programming languages and GA:
We considered projects from the top programming languages
from 2020 to 2023 (namely JavaScript, Python, TypeScript,
Java, C#, C++, PHP, C, Shell, and Ruby) due to their relevance
in the GitHub community during the study period [17]. We
identified projects using GA through the GitHub API because
they are the focus of our study.

(c) Active and large projects: We aimed to include those
projects demonstrating a collaborative, long-term software
development process. To identify such projects, we defined
thresholds using the “knee method”, following the strategy
outlined by Weeraddana et al. [18]. This strategy involved
evaluating: (1) the number of commits, (2) the number of
contributors, and (3) the number of stars. To evaluate the
number of commits, we established a threshold of 8.151,
chosen due to its proximity to the “knee” of the curve,
identifying 6,867 projects. For the number of contributors,
a threshold of 135 was similarly selected, also close to the
curve’s knee, identifying 2,417 projects. Likewise, for the
number of stars, we set a threshold of 28,691, identifying
211 projects with significant popularity. From these projects,
we only selected those providing a “readme” file written in
English, resulting in 187 projects.

(d) Deduplication of software projects: Finally, we manually
identified and removed duplicate and non-software projects
before cloning the remaining ones. We found that the projects
AutoGPT and Auto-GPT are the same non-forked repository
from the Significant-Gravitas owner, so we excluded
the second. After excluding three more projects due to cloning
errors, our dataset consists of 183 diverse software projects
from well-known organizations such as Google, Microsoft, and
others.

B. Data Curation

The data curation process consists of four steps: (a)
Classifying projects into single-workflow and multi-workflow
groups, (b) collecting commit data for each project, (c) clas-
sifying a project’s files into production code, test code, and
workflow files, and (d) unifying contributor identities.

(a) Classification into single- and multi-workflow projects:
To account for different strategies of workflow modularization,
we classify the projects into two groups: single-workflow,
consisting of 27 projects with only one workflow file, and
multi-workflow, containing 156 projects with more than one
workflow file. Our study compares these groups to assess
differences in their maintenance and evolution characteristics.

(b) Collecting commit data for each project: We collect
commit data for each project by iterating through the com-
mit history of all branches using the command git log
--topo-order. We extract the unique commit ID (SHA),

timestamp, contributor’s name, and the files modified or cre-
ated for each commit. We filter the commits to include only
those made from the point of introduction of the first GA-
related commit up to the end of 2023. This ensures that the
timeframes will be associated with the use of GA workflows.

(c) Unifying contributor identities: Changes in a committer’s
name or email address can result in incorrect attribution of
commits on GitHub. To unify contributor identities, we use
the GitHub-alias-merging script by Vasilescu et al. [19], which
employs heuristics to link different aliases and email addresses
of the same contributor.

(d) Classifying a project’s files into production code, test
code, and workflow files: We classify the files in each project
as production, test, or workflow files, following the method of
Nejati et al. [20]. We disregard any files that do not fall into
these categories. We use file extensions, naming, and location
conventions to identify file types. We focus on source code
files written in the project’s primary programming language,
categorizing them as production or test code files. For exam-
ple, in Java projects like spring-boot3 and dbeaver4,
we consider files with the .java extension. Using project-
specific naming and location conventions, we create regular
expressions to identify test files, classifying non-matching
source files as production code. We identify workflow files
by their location in the .github/workflows directory and
their .yml or .yaml extension. Unlike previous studies, we
exclude build files and similar artifacts due to the complexity
of identifying these across multiple programming languages
(e.g., due to the heterogeneity of build systems and the various
files involved as build scripts).

C. Analysis Techniques

We use three main analysis techniques: (a) statistical tests,
(b) association rules, and (c) open coding & card sorting.

(a) Statistical tests: We primarily used the Kruskal-Wallis
and Mann-Whitney tests [22] for our statistical analyses (RQ1-
RQ5). We applied the non-parametric Kruskal-Wallis test to
determine if the distribution of a measure varied between the
three file categories. If we rejected the null hypothesis—stating
“there is no significant difference between the means of the
three categories”—it indicated that at least one category had a
distinct distribution of the metric under examination. For post-
hoc testing, we used Mann-Whitney tests to identify which
specific categories had distinct distributions. We performed
these tests between every pair of file categories, applying the
Bonferroni correction to the alpha value (0.05 by default in
all our tests).

(b) Association rules: We investigate logical coupling in
RQ3 and RQ5 through association rules [21]. Specifically, to
assess the coupling relationship between different file cate-
gories, we analyze each pair ⟨A,B⟩ of file categories. As
for quantitative assessment, we use the usual metrics known
as Support (Supp), Confidence (Conf) and Lift, as defined in

3https://github.com/spring-projects/spring-boot
4https://github.com/dbeaver/dbeaver
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TABLE I: Association Rule metrics: Support, Confidence and Lift [21] (here: to assess the coupling relationship between
changes in different file categories).

Metric Formula Description

Supp(A) P (A)
Determines the frequency of changes in file category A. A value of 1 (or 100%) means that every commit changes at least
one file in category A.

Supp(A & B) P (A∩B)
Determines how frequently changes in file categories A and B occur together. A maximum value of 1 means that every
commit changes files in categories A and B.

Conf(A⇒B) P (A∩B)
P (A)

Determines how often changes in file category B occur along with changes in file category A. A maximum value of 1
means that whenever a file of category A is changed, at least one file of category B is changed in the same commit.

Lift(A⇒B) P (A∩B)
P (A)P (B)

Determines how much more (or less) likely changes in file category B are to occur along with changes in file category A,
compared to when no file of category A has changed. Lift = 1 means that changes in file categories A and B occur
together as expected if they were independent, while Lift >1 (Lift <1) indicates a strong (weak) association A ⇒ B.

Fig. 1: Mean relative frequencies of the studied file categories
in the multi-workflow group.

Table I for assessing frequencies of and relationships between
file category changes per commit (RQ3). The metrics used for
assessing frequencies of and relationships between developer
roles per project history (RQ5) are defined analogously. Af-
terwards, similar to Jiang and Adams [8], we performed chi-
square statistical tests to test whether the obtained confidence
values were significant or not higher than expected due to
chance.

(c) Open coding & card sorting: For RQ4, we conduct open
coding [23] using a randomly selected set of logically coupled
commits that have a lift greater than one. Then, we apply open
card sorting [24] to codify the reasons for coupled changes.
Open Coding and Card Sorting are widely used techniques
in software engineering useful to derive taxonomies from
data [24].

IV. ANALYSIS AND RESULTS

A. Relative Frequency and Size of Workflow Files (RQ1)

To answer RQ1, we study the relative frequency and size
of each file category (i.e., production, test, and workflow)
across all projects, separated by single-workflow and multi-
workflow groups. We use the Kruskal-Wallis test to evaluate
the statistical significance of our findings.

Fig. 2: Mean file sizes in NLOC (without outliers) of the
studied file categories in the multi-workflow group.

Overall, the 183 studied projects contain between 1 and 70
workflow files. The multi-workflow group has a mean relative
frequency of 3.74% workflow files, while the single-workflow
group has 3.05%. Production files make up the most significant
proportion, with a mean relative frequency of 74.59% in
the multi-workflow group and 83.31% in the single-workflow
group. Test files are the second-largest category, with a mean
relative frequency of 21.65% in the multi-workflow group and
13.63% in the multi-workflow group. Figure 1 shows a boxplot
of the proportion of the three file categories in the multi-
workflow group, reflecting these trends. We do not include a
boxplot of the single-workflow group since it follows the same
trends. More detailed statistics on both distributions may be
found in our replication package.

As we are dealing with textual source code artifacts in our
study, we measure their size in Number of Lines of Code
(NLOC). Production and test files are generally larger than
workflow files. In the multi-workflow group, workflow files
have a mean NLOC of 60.99, while production and test files
expose mean NLOC values of 103.26 and 101.37, respectively.
In the single-workflow group, the mean NLOC increases to
98.93 for workflow files, 128.19 for production files, and



113.32 for test files. Figure 2 shows a boxplot of the mean file
sizes in NLOC (without outliers) of the studied file categories
in the multi-workflow group. We do not include a boxplot for
the single-workflow group since it follows the same trends.
Again, more detailed statistics on both distributions may be
found in our replication package.

Finding 1: Workflow files account for a small pro-
portion of files, with a mean relative frequency of
3.74% in the multi-workflow group and 3.05% in
the single-workflow group. However, their mean size
of NLOC, at 60.99 in the multi-workflow group and
98.92 in the single-workflow group, is close to that of
production and test files, which are of the same order
of magnitude.

B. Rate of Changes in Workflow Files (RQ2)

To assess the rate of changes in workflow files, we first
determined the amount of changed files per month of each
project. Subsequently, to enable comparisons over time, we
normalize the number of changed files by dividing it by the
total number of files in the corresponding category for that
month, yielding the proportion of changed files in terms of file
churn rate [11]. For each project, we then calculate the average
proportion of changed files per month, and we study the
distribution of this average across all projects. Furthermore, we
conducted a Kruskal-Wallis test and post-hoc tests to examine
the statistical significance of our results.

The analysis of both single- and multi-workflow groups
reveals that the monthly proportion of changed workflow files
is significantly lower than for production and test code files. In
the single-workflow group, workflow files have a mean value
of 6.8%, while in the multi-workflow group, the mean value
is 8.2%. Production files have mean values of 84.53% and
74.12% for the single-workflow and multi-workflow groups,
respectively. Test code files have mean values of 10.75% and
18.90%, correspondingly.

Figure 3 illustrates the distribution of the rate of changes
for the workflow, test, and production file categories. The
solid lines represent the median percentages, and the dotted
lines represent the first and third quartiles. The figure shows
that workflow files have a relatively narrow distribution with
a concentration around lower change rates, indicating they
experience fewer changes overall. Additionally, the plot for
workflow files reveals a single peak, suggesting a consistent
rate of changes, mainly concentrated at lower proportions.
In contrast, production files show a wide distribution with
a higher concentration around the upper change rates and
a pronounced peak, reflecting their more frequent updates.
Test files exhibit a distribution between the workflow and
production files, indicating moderate change frequencies.

A Kruskal-Wallis test confirmed significant differences in
the distributions of the monthly change percentages among
the different file categories in both groups, with extremely
low p-values of 5.06e-33 for the multi-workflow group and

0.0 for the multi-workflow group. Further Mann-Whitney post-
hoc tests showed statistically significant differences between
Production and Workflow files, with p-values of 1.77e-14 and
0.0, respectively. The tests also showed significant differences
between Production and Test files, with p-values of 2.04e-29
and 0.0 each. Additionally, there were significant differences
between Test and Workflow files, with p-values of 4.76e-11
for the multi-workflow group and 1.32e-255 for the multi-
workflow group.

Finding 2: Workflow files change less frequently than
production and test code files. In the multi-workflow
group, a mean of 8.2% of the workflow files undergo
at least one monthly change, while repositories with
a single-workflow account for a mean 6.9%. In the
same time period, production files have a mean change
proportion of 74.12% in the multi-workflow group and
84.53% in the single-workflow group. Similarly, test
files change 18.90% of the time in multi-workflow
and 10.75% of the time in repositories with a single
workflow.

C. Quantitative Analysis of Logical Workflow Coupling (RQ3)

The results of our quantitative analysis indicate that work-
flow files are the least frequently changed, as evidenced by
the low Support metric values (1.40% in the multi-workflow
group and 3.13% in the single-workflow group)(See Table II).
While modified more often than workflow files, test files
still show relatively low-frequency changes (Support values
of 19.07% in the multi-workflow group and 32.57% in the
single-workflow group). On the other hand, production files
exhibit the highest frequency of changes, with Support values
of 92.57% in the multi-workflow group and 88.55% in the
single-workflow group.

Regarding the relationship between workflow and test files
(Supp(Workflow & Test)), the Support is 0.06% in the single-
workflow group and 0.23% in the multi-workflow group,
indicating that commits involving changes in both categories
are extremely rare. For the relationship between workflow and
production files (Supp(Workflow & Production)), the Support
is slightly higher, with values of 0.17% in the single-workflow
group and 0.53% in the multi-workflow group.

Changes in workflow files are rarely associated with changes
in other categories, and when they are, they are more likely
to coincide with changes in production files rather than test
files. Regarding the relationship between workflow and test
files (Conf(Workflow ⇒ Test)), the Confidence is 4.60% in
the multi-workflow group and 7.40% in the single-workflow
group, indicating that if a commit involves changes in work-
flow files, there is a 4.60% chance in the multi-workflow
group and a 7.40% chance in the single-workflow group that
it also involves changes in test files. For the relationship
between workflow and production files (Conf(Workflow ⇒
Production)), the Confidence values are higher, with 12.26% in
the single-workflow group and 17.00% in the multi-workflow



Fig. 3: Distribution of the rate of changes for the workflow,
test, and production file categories. We calculated the monthly
rate of change by normalizing the number of changed files
against the total files in each category, then averaging this
proportion per month for each project.

group. If a commit involves changes in workflow files, there is
a 12.26% chance in the single-workflow group and a 17.00%
chance in the multi-workflow group that it also involves
changes in production files.

Changes in workflow files tend to occur independently of
changes in both test and production files, as indicated by the
Lift metrics. For the relationship between workflow and test
files (Lift(Workflow ⇒ Test)), the Lift is 24.12% in the single-
workflow group and 22.71% in the multi-workflow group.
These values indicate that changes in workflow files reduce
the likelihood of changes in test files to 24.12% and 22.71%
of what would be expected by random chance, respectively.
This suggests a negative association, meaning that changes in
workflow files rarely coincide with changes in test files.

For the relationship between workflow and production files
(Lift(Workflow ⇒ Production)), the Lift values are 13.25% in
the single-workflow group and 19.20% in the multi-workflow
group. These values show that when workflow files change,
production files rarely change at the same time: only 13.25%
of the time in the single-workflow group and 19.20% of the
time in the multi-workflow group. Although the Lift values
for workflow and production files are slightly higher than
those for workflow and test files, they still indicate a negative
association.

The combination of workflow and test yields a chi-square
value of 4502.59 with a p-value of < 0.0001, suggesting a
strong correlation between these two categories. Furthermore,
the combination of workflow and production reveals an even
stronger association, with a chi-square value of 78,799.33 and
a p-value of < 0.0001. Similarly, the combination of test and
production also shows a highly significant correlation, with
a chi-square value of 58,511.84 and a p-value of < 0.0001.
These results imply that there are significant relationships
between these categories and that they are not independent
of each other.

TABLE II: File category changes per commit: Support, Confi-
dence, and Lift metrics for single- and multi-workflow groups.

Metric Category Combination Single Multi

Support

Workflow 0.0140 0.0313
Test 0.1907 0.3257
Production 0.9257 0.8855
Workflow & Test 0.0006 0.0023
Workflow & Production 0.0017 0.0053

Confidence Workflow ⇒ Test 0.0460 0.0740
Workflow ⇒ Production 0.1226 0.1700

Lift Workflow ⇒ Test 0.2412 0.2271
Workflow ⇒ Production 0.1325 0.1920

Finding 3: The coupling between workflow files and
other file categories is minimal and weak. For the
relationship between workflow and test files, there is
a 4.60% chance in the single-workflow group and
a 7.40% chance in the multi-workflow group that a
commit involving workflow files also changes test files.
For workflow and production files, there is a 12.26%
chance in the single-workflow group and a 17.00%
chance in the multi-workflow group. In the multi-
workflow group, there is a slightly higher but still
weak interdependence between workflow and produc-
tion files.

D. Qualitative Analysis of Logical Workflow Coupling (RQ4)

In addition to RQ3, we also conducted a qualitative analysis
of commits that contribute to the highest levels of logical
coupling, as indicated by their Lift values (see Table II).
We applied open coding and card sorting for this analysis.
We selected 200 commits with the highest Lift scores (100
from the single-workflow group and 100 from the multi-
workflow group) to investigate why workflow changes were
tightly coupled, similar to the previous work by Jiang et al. [8].

We followed a structured approach to card sorting, carried
out in three distinct phases as recommended by Zimmer-
mann [24]: First, in the preparation phase we use descriptive
coding [25]. We set up a collection of cards to provide a
detailed understanding of the workflow coupling. Each com-
mit was meticulously described based on the GitHub single
commit view, including the reasons for and locations of the
changes. Second, in the execution phase, we labelled and
organized each card into relevant groups with clear, descriptive
categories. Finally, in the analysis phase, we created abstract
hierarchies without predefined categories to identify broader
trends and general categories.

To ensure accuracy, the description criteria were tested by
three participants: two undergraduate students, one graduate
student and the first author. Each of them was given 100 com-
mits to describe the reason for coupling. These descriptions
were then reviewed and refined collaboratively to establish a
final structure. During the sorting process, we used spread-
sheets to facilitate easier handling and better understanding of
each commit. A hierarchy was created manually to organize a
set of categories.



TABLE III: Main Reasons for Logical Coupling.

Main Reasons for Logical Coupling Specific reason Workflow & Test Workflow & Production

Management and Configuration
Configuration and Infrastructure 1% 3%
Dependency and Build Management 7% 6%
Merging and Synchronization 1% 5%

Development and Enhancement
CI/CD Improvement 61% 33%
Code Quality and Maintenance 7% 9%
Features and Enhancements 6% 11%

Bug Fixes and Compatibility — 12% 18%

Testing and Documentation Testing 4% 12%
Documentation 1% 3%

Total 100% 100%

As a result, we built a taxonomy consisting of nine reasons
for logical coupling including a total of 200 labelled commits
(Table III). We grouped them into four main categories: (1)
Management and Configuration, (2) Development and En-
hancement, (3) Bug Fixes and Compatibility, and (4) Testing
and Documentation.

1) Management and Configuration
This category involves tasks related to setting up and

managing the project’s environment, including configuring
infrastructure, handling dependencies, and synchronizing code
across different branches (9% of workflow & test, 13% of
workflow & production). These activities ensure that the
foundational aspects of the project are well-organized and
functioning correctly. Three reasons for coupling are related
to this category: (i) Configuration and Infrastructure, (ii)
Dependency and Build Management, and (iii) Merging and
Synchronization.

1.a) Configuration and Infrastructure encompasses mod-
ifications related to setting up and maintaining the infras-
tructure and configuration necessary for the project. Proper
configuration management is essential for ensuring a stable
and efficient development environment. The commit “fix(dev):
Add .python-version back” illustrates this by addressing issues
related to the Python version management within the develop-
ment environment.5

1.b) Dependency and Build Management involves managing
the project’s dependencies, orchestrating the build process,
and ensuring that all necessary components are correctly inte-
grated. The commit “Revert Switch to Debian 11 (bullseye) as
base for our dockerfiles” involves reverting a change to Debian
11 (bullseye) that caused all pull requests to fail.6 The revert
restored stability, ensuring dependencies and configurations
returned to a reliable state.

1.c) Merging and Synchronization cover tasks related to
merging code from different branches and synchronizing
changes across the codebase. The commit “Merge branch ‘6.4’
into 7.0” exemplifies this category by integrating changes from
branch 6.4 into 7.0, which involves combining contributions
from different parents and resolving potential conflicts.7 It ad-

5https://bit.ly/3RDUhR8
6https://bit.ly/3VEq99g
7https://bit.ly/45AHXqG

dresses specific issues, such as fixing the silencing of the wait
command for sigchild-enabled binaries, and updates
multiple files to ensure consistent behaviour and compatibility.

2) Development and Enhancement
This category encompasses tasks related to improving the

project’s functionality and performance. It involves introduc-
ing new features, enhancing existing ones, and ensuring the
software efficiently meets user needs and standards (84% of
workflow & test, 53% of workflow & production). Three fac-
tors contributing to coupling are associated with this category:
(i) CI/CD Improvement, (ii) Code Quality and Maintenance,
and (iii) Features and Enhancements.

2.a) CI/CD Improvement relates to optimizing and automat-
ing the continuous CI/CD Improvement. It includes setting
up and refining pipelines and ensuring smooth and efficient
code integration. The commit “Use npm v7 with workspaces
for local development and testing” explains how developers
upgrade the project to use npm v7 with workspaces,
enhancing continuous integration and deployment processess.8

2.b) Code Quality and Maintenance involve activities that
ensure the software remains functional, efficient, and easily
understood over time. This includes practices such as refactor-
ing code to improve readability and performance and writing
and maintaining tests to catch bugs early. The commit “tools:
automate histogram update” enhances the CI/CD workflow
by automating the update process for the project’s histogram
dependency.9 It adds a new script, update-histogram.sh, to
the tools directory, which fetches and updates the histogram
to its latest version from GitHub releases.

2.c) Features and Enhancements involve activities to add
new functionality or improve existing features in a software
project. This includes designing and implementing new fea-
tures to meet user needs, optimizing performance, enhancing
user interfaces, and extending the software’s capabilities. For
example, the commit “Add –os and –arch flags to readall”
exemplifies this category by adding the --os and --arch
flags to the brew readall command, allowing users to read
using specified operating systems and CPU architectures.10

8https://bit.ly/3RBzSMw
9https://bit.ly/3VBIaFl
10https://bit.ly/4eyYX4E
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TABLE IV: Developer roles per project history: Support and
Confidence metrics for single- and multi-workflow groups.

Metric Category Combination Single Multi

Support

Workflow 0.0435 0.0486
Test 0.2150 0.4664
Production 0.9746 0.9636
Workflow & Test 0.0165 0.0224
Workflow & Production 0.0155 0.0225
Test & Production 0.1751 0.4156

Confidence

Workflow ⇒ Test 0.3809 0.4609
Workflow ⇒ Production 0.3571 0.4637
Test ⇒ Workflow 0.0771 0.0480
Production ⇒ Workflow 0.0159 0.0233

3) Bug Fixes and Compatibility
This category refers to activities dedicated to identifying

and fixing bugs, as well as ensuring that the project re-
mains compatible with different environments and dependen-
cies. These tasks are crucial for maintaining the stability
and reliability of the project (12% of Workflow & Test,
18% of Workflow & Production). The commit “alt-svc: en-
able by default”, illustrates this category: altsvc support
by default in curl and removes the unused CURLALTSV
CIMMEDIATELY option.11 The update involves modifica-
tions across 27 files, including changes to configuration files
for CI pipelines, such as .azure-pipelines.yml, and
.github/workflows/macos.yml.

4) Testing and Documentation
This category focuses on tasks related to ensuring the

reliability of the code through testing and improving project
documentation (5% of Workflow & Test, 15% of Workflow &
Production). Two factors contributing to coupling are associ-
ated with this category: (i) Testing, and (ii) Documentation.

4.a) Testing refers to modifications that enhance the testing
framework or add new tests to ensure more comprehensive and
effective software validation. This includes updates to testing
scripts, configurations, or the addition of new test cases. The
commit titled “fix: nschematics install Windows” addresses is-
sues with installing the schematics on Windows systems.12 The
changes include adding smoke tests for Angular Schematics
on multiple operating systems (Ubuntu, Windows, macOS),
updating Node.js setup in GA, and modifying various files
to support the Windows installation process.

4.b) Documentation refers to the changes to the docu-
mentation within the software project. This includes updates,
additions, or deletions to ensure that the documentation is
accurate and up-to-date. The commit “Change supported PyPy
versions to 3.9 and 3.10”, illustrates the updates the the
ReadTheDocs (RTD) URL for the coverage documentation
is updated to point to the latest version.13 There are also
adjustments to the GA workflow, specifically for testing on
PyPy versions and ensuring the correct system libraries are
installed based on the Python version being used.

11https://bit.ly/4cuZ4fK
12https://bit.ly/4exe8LJ
13https://bit.ly/3xsxYHi

Finding 4: Given that some degree of logical coupling
of workflow files and other file categories can be ob-
served, our results identified key reasons for this. The
main contributors are Management and Configuration
tasks, with significant activities including Dependency
and Build Management, and Merging and Synchroniza-
tion. The primary drivers are Development and En-
hancement activities, particularly CI/CD Improvement
processes. Bug Fixes and Compatibility also play a
critical role, along with Testing and Documentation
efforts.

E. Workflow Ownership Distribution (RQ5)

Identifying ownership for each category involves examining
the commits made to the repository. We look at the author
of each commit to determine their role in the development
process. If a commit modifies a workflow file, then the author
of that commit is considered a workflow developer. An author
can have multiple roles, such as being both a workflow
developer and a production code developer, even for the same
commit.

We compute the same metrics as for RQ3, this time for
the ownership. For example, Supp(Workflow) indicates the per-
centage of developers changing workflow files from the total
number of developers. Supp(Workflow & Production) is the
percentage of developers changing workflow and production
files from the total number of developers. The Conf(Workflow
⇒ Production) represents the percentage of workflow devel-
opers who also modify production files, in relation to the total
number of developers who have made at least one change to
a workflow file.

Based on the Support results, workflow developers have the
lowest proportion among all developers, with only 4.35% in
the single-workflow group and 4.86% in the multi-workflow
group being involved in changes to workflow files (Table
IV). These results could indicate that workflow changes are
more specialized tasks handled by a smaller subset of devel-
opers. In contrast, production code developers are the most
common among all developers, with 97.46% in the single-
workflow group and 96.36% in the multi-workflow group
making changes to production files.

Regarding the combination of workflow and test file
changes, 1.65% of developers in the single-workflow group
and 2.24% in the multi-workflow group are involved in both.
These low results indicate that it is relatively uncommon
for developers to work on both workflow and test files. The
infrequency of these combined changes suggests that workflow
and test tasks are often handled separately, with few developers
integrating their efforts across these areas.

Similarly, 1.55% of developers in the multi-workflow group
and 2.25% in the single-workflow group are involved in the
combination of workflow and production file changes. These
low percentages hint that it is uncommon for developers to
work on both workflow and production files. The rarity of
these combined changes suggests that workflow and produc-

https://bit.ly/4cuZ4fK
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https://bit.ly/3xsxYHi


tion tasks are typically managed independently, with limited
overlap in developer responsibilities.

In terms of Confidence, 38.09% of developers in the single-
workflow group who changed workflow files also changed
test files, compared to 46.09% in the multi-workflow group
(Conf(Workflow ⇒ Test)). Although it is relatively uncommon
for workflow developers to also be involved in test file
changes, these confidence values are moderately high in this
context. The higher confidence in the multi-workflow group
indicates that developers in this group are more likely to inte-
grate their workflow changes with test changes, highlighting
a more collaborative and thorough development process.

Most developers do not modify workflow files, suggesting
a specialization in these tasks. The considerable values of
Conf(Production ⇒ Workflow) and Conf(Test ⇒ Workflow) in-
dicate that while workflow developers are relatively few, those
involved in production and test activities frequently engage
with workflow changes. Specifically, 15.90% of production
code developers in the single-workflow group and 23.30% in
the multi-workflow group also change workflow files, while
7.71% of test developers in the single-workflow group and
4.80% in the multi-workflow group also change workflow files.

Finding 5: Few developers work on workflow files,
with only 4.35% in the single-workflow group and
4.86% in the multi-workflow group. However, a no-
table proportion of developers who work on workflow
files also work on test files (38.09% in the multi-
workflow group and 46.09% in the multi-workflow
group) and production files (35.71% in the single-
workflow group and 46.37% in the multi-workflow
group).

V. DISCUSSION

In this section, we discuss the findings presented in the
previous section and provide a set of practical implications.

(a) RQ1 & RQ2. Compared to production and test code files,
workflow files represent only a minor fraction of the overall
project files, underscoring their specialized role in managing
CI/CD pipelines and automation tasks. Additionally, workflow
files change significantly less frequently than production and
test files. This characteristic is likely due to their specific
and well-defined roles in automating CI/CD processes, which
do not change as dynamically as production and test code.
Nonetheless, they are far from being stable, which confirms
our hypothesis that manual effort is needed for maintaining
workflow files over time. Although workflow files are typically
smaller than production code files, their size is not drastically
different from test files, especially in the multi-workflow
group where the means are relatively close. That is, workflow
files being designed to automate specific tasks still contain a
substantial number of lines of code.

Implication 1: Given workflow files’ substantial size and
critical role in CI/CD processes, practitioners should allocate
resources accordingly. Despite their smaller proportion, these

files require careful maintenance. Practitioners should dedicate
sufficient time and personnel to ensure the stability and
efficiency of workflows, as this directly impacts the overall
development and deployment process.

(b) RQ3 & RQ4. Although the confidence of a work-
flow file change coinciding with a production file change
is relatively low, and even lower with test files, workflow
files exhibit minimal coupling with these file categories. A
thorough investigation of commits that contribute to the logical
coupling reveals that they are primarily updated for CI/CD
improvements and bug fixes.

Implication 2: By categorizing the logical coupling between
workflow files and other file categories, our taxonomy reveals
that current tools lack robust error reporting and support
features. This classification identifies areas where tools fail
to meet users’ needs, revealing the need for researchers to
develop advanced tools to address these gaps.

(c) RQ5. Our analysis finds that few developers work
on workflow files. However, confidence values reveal that
a notable proportion of developers who work on workflow
files also work on test and production files, suggesting that
workflow maintenance requires cross-functional knowledge.

Implication 3: Practitioners should be aware of these depen-
dencies and plan their development and maintenance activities
to account for the interconnected nature of changes in work-
flow files. Organizations should ensure that their teams include
developers skilled in both workflow management and general
software development.

VI. THREATS TO VALIDITY AND LIMITATIONS

A. Internal Validity

Selection Bias: The selection of projects based on criteria
like the number of commits and stars may introduce selection
bias, potentially not representing the entire population of GA
workflow projects. We mitigated this by using a systematic
selection methodology and including a diverse set of projects
across multiple programming languages.

Measurement Error and Categorization Accuracy: Errors
or inconsistencies in the repositories’ metadata, commit mes-
sages, or file histories could affect our results. Additionally,
misclassification of file changes into production, test, and
workflow categories could occur due to naming conventions
and file locations. We used established tools and methods
for data curation and analysis, and a rigorous methodology
including regular expressions and manual checks, to ensure
consistency and accuracy.

Confounding Variables and Temporal Effects: Factors such
as developer experience, project size, and complexity could
influence our findings. Additionally, development practices
and technologies may have evolved over the four-year study
period. To address these issues, we generalized our results
across multiple projects and languages, reducing the impact
of any single variable. We also included a broad time frame
to capture trends and changes over time.

Developer Attribution and File Classification: Unifying
contributor identities can be challenging due to aliasing and



changes in email addresses or usernames, and errors in classi-
fying files into production, test, and workflow categories can
lead to incorrect conclusions. We used heuristics to merge
aliases, manual verification for accurate developer attribution,
followed a standardized classification scheme, and performed
manual checks to verify accuracy.

B. External Validity

Platform and Ecosystem Specificity: Our study focuses
exclusively on GA workflows, which may not apply to other
CI/CD platforms such as GitLab CI, Travis CI, or Jenkins.
Additionally, projects hosted on GitHub may exhibit unique
characteristics compared to those on other platforms. To
mitigate this, we suggest future research replicate the study
across different CI/CD platforms and hosting environments to
verify the generalizability of our results.

Project and Domain Diversity: Although we included a
diverse set of projects across various programming languages,
certain project types or domains may still be underrepresented.
We addressed this by systematically selecting projects from a
variety of domains and ensuring broad representation.

C. Construct Validity

We assume that studying changes is a good proxy to assess
the maintenance of a software artifact. This assumption may
not always hold true, as even simple and small changes
in a workflow file could result from significant cognitive
effort. This simplification was necessary because we aimed
to measure across multiple repositories, which is feasible
when considering changes rather than the broader concept of
maintenance. To mitigate, we performed a qualitative analysis
of a sample of commits to better understand the context and
complexity of the changes. By examining the reasons for
changes we aim to provide a more nuanced understanding of
the maintenance activities.

VII. RELATED WORK

Prior empirical studies have focused on various aspects
of maintenance and evolution related to Continuous Inte-
gration and Continuous Delivery (CI/CD) practices, essential
for modern development using tools like Jenkins, Travis,
CircleCI, and GA. Jiang and Adams as well as Adams and
McIntosh explored CI configurations and build maintenance
efforts, highlighting challenges in maintaining scripts and
configurations [7], [8]. Gallaba et al. provided a comprehen-
sive overview of CI/CD practices based on eight years of
data [26]. Studies on the Greenkeeper dependency bot also
emphasize the need to evaluate automation tools’ benefits and
costs [6]. Zhao et al. [27] and Cassee et al. [28] examined how
the introduction of the Travis CI tool affected development
practices. However, none of the above mentioned studies
specifically focused on GA.

Research shows that GA, introduced in 2019, quickly re-
placed Travis due to its integration and ease of use [29].
Rostami Mazrae et al. found modifications to be the most
common GA workflow changes, revealing hidden maintenance

costs and broader implications [30]. Delicheh et al. [31]
provide preliminary insights into the dependencies of GA
actions. Decan et al. [32] have studied the extent to which
automation workflows are outdated with respect to updated
GA actions, concluding that better policies and tooling are
needed to keep workflows up-to-date. Valenzuela-Toledo and
Bergel also identified the need for better tooling for GA
workflows [33]. The research by Kinsman et al. examined
how developers use GA and how activity indicators change
after its adoption [34]. Saroar and Nayebi surveyed developers
to understand their perceptions of GA, revealing motivations,
decision criteria, and challenges [35]. Zhang et al. conducted
a large-scale empirical study to create a taxonomy of GA-
related problems, while Bouzenia and Pradel looked into
resource usage and optimization opportunities in GA work-
flows [36]. Other studies, such as Koishybayev et al. [37],
explored security risks associated with excessive privileges
in GA workflows. The EGAD project [38], [39] provides
a tool environment to explore and analyze GA workflows,
contributing to a deeper understanding of their usage and
maintenance practices. Cardoen et al. [40] developed an open-
source tool designed to extract the commit histories of changes
made to workflow files in GitHub repositories, along with a
raw dataset that has been collected using their tool. Despite
the relevance of all ot these studies, none of them specifically
addressed the characterization of the maintenance of GA
workflow files, which is the primary focus of our research.

VIII. CONCLUSION

Automating tasks with GA has become standard practice in
the software industry, enabling developers to automate build-
ing, testing, and deployment processes. However, our research
reveals that implementing and maintaining these workflow files
is not without additional costs. A large-scale empirical study
spanning 183 GitHub projects in ten different programming
languages identified several key features and challenges in
maintaining GA workflow files.

Our findings confirm results from previous studies on the
maintenance of similar artifacts such as Build files and In-
frastructure as Code. While beneficial for efficiency, automa-
tion entails hidden costs that must be adequately managed.
Practitioners must plan and allocate sufficient resources for
maintaining these workflows, including identifying and docu-
menting best practices.

Despite the strengths of our study, there are threats to
construct validity that need to be considered. The scope of
our analysis may not cover all aspects of workflow main-
tenance, and certain contextual factors unique to individual
projects may influence the results. To mitigate these threats
in future work, we plan to conduct more focused studies on
specific aspects of workflow maintenance, exploring different
perspectives and contexts. Additionally, we aim to collaborate
with practitioners to gather more detailed insights and develop
tailored strategies for efficient workflow management.
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